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Chapter 2 
The Solow Model 

All theory depends on assumptions which are not quite 
true. That is what makes it theory. The art of success­
ful theorizing is to make the inevitable simplifying 
assumptions in such a way that the final results are . 
not very sensitive. -ROBERT SOLOW (1956), P. 65. 

n 1956, Robert Solow published a seminal paper on economic 
growth and development titled "A Contribution to the Theory of Eco­
nomic Growth." For this work and for his subsequent contributions to 
our understanding of economic growth, Solow was awarded the Nobel 
Prize in economics in 1987. In this chapter, we develop the model pro­
posed by Solow and explore its ability to explain the stylized facts of 
growth and development discussed in Chapter 1. As we will see, this 
model provides an important cornerstone for understanding why some 
countries flourish while others are impoverished. 

Following the advice of Solow in the quotation above, we will make 
several assumptions that may seem to be heroic. Nevertheless, we hope 
that these are simplifying assumptions in that, for the purposes at hand, 
they do not terribly distort the picture of the world we create. For ex­
ample, the world we consider in this chapter will consist of countries 
that produce and consume only a single, homogeneous good (output). 
Conceptually, as well as for testing the model using empirical data, it is 
convenient to think of this output as units of a country's gross domes­
tic product, or GDP. One implication of this simplifying assumption is 

THE SOLOW MOOEL 21 

that there is no international trade in the model because there is only 
a single good: I'll give you a 1941 Joe DiMaggio autograph in exchange 
for ... your 1941 Joe DiMaggio autograph? Another assumption of the 
model is that technology is exogenous- that is, the technology avail­
able to firms in this simple world is unaffected by the actions of the 
firms, including research and development (R&D). These are assump­
tions that we will relax later on, but for the moment, and for Solow, they 
serve well. Much progress in economics has been made by creating a 
very simple world and then seeing how it behaves and misbehaves. 

Before presenting the Solow model, it is worth stepping back to con­
sider exactly what a model is and what it is for. In modern economics, a 
model is a mathematical representation of some aspect of the economy. 
It is easiest to think of models as toy economies populated by robots. We 
specify exactly how the robots behave, which is typically to maximize 
their own utility. We also specify the constraints the robots face in seek­
ing to maximize their utility. For example, the robots that populate our 
economy may want to consume as much output as possible, but they are 
limited in how much output they can produce by the techniques at their 
disposal. The best models are often very simple but convey enormous 
insight into how the world works. Consider the supply and demand 
framework in microeconomics. This basic tool is remarkably effective 
at predicting how the prices and quantities of goods as diverse as health 
care, computers, and nuclear weapons will respond to changes in the 
economic environment. 

With this understanding of how and why economists develop mod­
els, we pause to highlight one of the important assumptions we will 
make until the final chapters of this book. Instead of writing down util­
ity functions that the robots in our economy maximize, we will sum­
marize the results of utility maximization with elementary rules that 
the robots obey. For example, a common problem in economics is for 
an individual to decide how much to consume today and how much to 
save for consumption in the future. Another is for individuals to decide 
how much time to spend going to school to accumulate skills and how 
much time to spend working in the labor market. Instead of writing 
these problems down formally, we will assume that individuals save a 
constant fraction of their income and spend a constant fraction of their 
time accumulating skills. These are extremely useful simplifications; 
without them, the models are difficult to solve without more advanced 
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mathematical techniques. For many purposes, these are fine assump­
tions to make in our first pass at understanding economic growth. Rest 
assured, however, that we will relax these assumptions in ~hapter 7. 

THE BASIC SOLOW MODEL 

The Solow model is built around two equations, a production function 
and a capital accumulation equation. The production function describes 
how inputs such as bulldozers, semiconductors, engineers, and steel­
workers combine to produce output. To simplify the model, we group 
these inputs into two categories, capital, K, and labor, L, and denote out­
put as Y. The production function is assumed to have the Cobb-Douglas 
form and is given by 

y = F(K,L) = Kau-a. (2.1) 

where a is some number between 0 and 1.1 Notice that this produc­
tion function exhibits constant returns to scale: if all of the inputs are 
doubled, output will exactly double. 2 • 

Firms in this economy pay workers a wage, w, for each umt of 
labor and pay r in order to rent a unit of capital for one period. We 
assume there are a large number of firms in the economy so that perfect 
competition prevails and the firms are price-takers.3 Normalizing the 
price of output in our economy to unity, profit-maximizing firms solve 
the following problem: 

maxF(K,L)- rK- wL. 
K,L 

According to the first-order conditions for this problem, firms will hi~e 
labor until the marginal product of labor is equal to the wage and w1ll 

1Charles Cobb and Paul Douglas (1928] prop~;>sed this functional form in their analysis of 
u.s. manufacturing. Interestingly, they argued that this production function, with a value 
for a of 1/4, fit the data very well without allowing for technological progress. . 
zRecall that if F(aK, aL] = aY for any number a > 1, then we say that the productwn 
function exhibits constant returns to scale. If F(aK, aL] > a Y, then the production func­
tion exhibits increasing returns to scale, and if the inequality is reversed the production 
function exhibits decreasing returns to scale. 

.3You may recall from microeconomics that with constant returns to scale the number of 
firms is indeterminate-i.e., not pinned down by the model. 
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rent capital until the marginal product of capital is equal to the rental 
price: 

aF Y 
w = aL = (1- a)y, 

i!F y 
r =-=a-

aK K. 

Notice that wL + rK = Y. That is, payments to the inputs ("factor 
payments") completely exhaust the value of output produced so that 
there are no economic profits to be earned. This important result is a 
general property of production functions with constant returns to scale. 
Notice also that the share of output paid to labor is wL/Y = 1 - a and 
the share paid to capital is rK/Y = a. These factor shares are therefore 
constant over time, consistent with Fact 5 from Chapter 1. 

Recall from Chapter 1 that the stylized facts we are typically in­
terested in explaining involve output per worker or per capita output. 
With this interest in mind, we can rewrite the production function in 
equation (2. 1) in terms of output per worker, y = Y /L, and capital per 
worker, k = K/L: 

(2.2) 

This production function is graphed in Figure 2.1. With more capital 
per worker, firms produce more output per worker. However, there are 
diminishing returns to capital per worker: each additional unit of capital 
we give to a single worker increases the output of that worker by less 
and less. 

The second key equation of the Solow model is an equation that 
describes how capital accumulates. The capital accumulation equation 
is given by 

k = sY- dK. (2.3) 

This kind of equation will be used throughout this book and is very 
important, so let's pause a moment to explain carefully what this equa­
tion says. According to this equation, the change in the capital stock, 
k-;-is equal to the amount of gross investment, s Y, less the amount of 
depreciation that occurs during the production process, dK. We'll ;now 
discuss these three terms in more detail. 1 . I 
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.1 A COBB-DOUGLAS PRODUCTION 
FUNCTION 

k 

The term on the left-hand side of equation (2.3) is the continuous 
time version of Kt+ 1 - K1, that is, the change in the capital stock per 
"period." We use the "dot" notation4 to denote a derivative with respect 
to time: 

. dK 
K=(it· 

The second term of equation (2.3) represents gross investment. Fol­
lowing Solow, we assume that workers/consumers save a constant frac­
tion, s, of their combined wage and rental income, Y = wL + rK. The 
economy is closed, so that saving equals investment, and the only use 
of investment in this economy is to accumulate capital. The consumers 
then rent this capital to firms for use in production, as discussed above. 

The third term of equation (2.3) reflects the depreciation of the cap­
ital stock that occurs during production. The standard functional form 
used here implies that a constant fraction, d, of the capital stock depre­
ciates every period (regardless of how much output is produced). For 

4 Appendix A discusses the meaning of this notation in more detail. 
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example, we often assume d = .05, so that 5 percent of the machines 
and factories in our model economy wear out each year. 

To study the evolution of output per person in this economy, we 
rewrite the capital accumulation equation in terms of capital per person. 
Then the production function in equation (2.2) will tell us the amount 
of output per person produced for whatever capital stock per person 
is present in the economy. This rewriting is most easily accomplished 
by using a simple mathematical trick that is often used in the study of 
growth. The mathematical trick is to "take logs and then derivatives" 
(see Appendix A for further discussion). Two examples of this trick are 
given below. 

Example 1: 

Example 2: 

k = K/L ===? logk = logK -logL 

k k t 
===}-=---

k K L. 

y = k" ===?logy= a logk 

. ic 
===? ~ = ak. 

Applying Example 1 to equation (2.3) will allow us to rewrite the 
capital accumulation equation in terms of capital per worker. But before 
we proceed, let's first consider the growth rate of the labor force, L/L. 
An important assumption that will be maintained throughout most of 
this book is that the labor force participation rate is constant and that 
the population growth rate is given by the parameter n. 5 This implies 
that the labor force growth rate, L/L, is also given by n. If n = .01, then 
the population and the labor force are growing at one percent per year. 
This exponential growth can be seen from the relationship 

Take ~ogs and differentiate this equation, and what do you get? 

50ften, it is convenient in describing the model to assume that the labor force participation 
rate is unity-i.e., every member of the population is also a worker. 
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Now we are ready to combine Example 1 and equation (2.3): 

~ = sY- n- d 
k K 

= sr- n- d. 

This now yields the capital accumulation equation in per worker terms: 

k = sy - (n + d)k. 

This equation says that the change in capital per worker each period is 
determined by three terms. Two of the terms are analogous to the origi­
nal capital accumulation equation. Investment per worker, sy, in~reases 
k, while depreciation per worker, dk, reduces k. The term that Is new 
in this equation is a reduction in k because of population growth, the 
nk term. Each period, there are nL new workers around who were not 
there during the last period. If there were no new investment and no 
depreciation, capital per worker would decline because of the increase 
in the labor force. The amount by which it would decline is exactly nk, 

as can be seen by setting k to zero in Example 1. 

SOLVING THE BASIC SOLOW MODEL 

We have now laid out the basic elements of the Solow model and it is 
time to begin solving the model. What does it mean to "solve" a model? 
To answer this question we need to explain exactly what a model is and 

to define some concepts. 
In general, a model consists of several equations that describe there-

lationships among a collection of endogenous variables-that is, among 
variables whose values are determined within the model itself. For ex­
ample, equation (2.1) shows how output is produced from capital.and 
labor, and equation (2.3) shows how capital is accumulated over time. 
Output, Y, and capital, K, are endogenous variables, as are the respec­

tive "per worker" versions of these variables, y and k. 
Notice that the equations describing the relationships among en­

dogenous variables also involve parameters and exogenous variables. 
Parameters are terms such as a, s, k0 , and n that stand in for single 
numbers. Exogenous variables are terms that may vary over time but 
whose values are determined outside of the model-i.e., exogenously. 
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The number of workers in this (~conomy, L, is an example of an exoge­
nous variable. 

With .these concepts explained, we are ready to tackle the question 
of what It means to solve a model. Solving a model means obtaining 
the values of each endogenous variable when given values for the ex­
ogenous variables and parameters. Ideally, one would like to be able to 
express each endogenous variable as a function only of exogenous vari­
ables and_ par_am_eters. Sometimes this is possible; other times a diagram 
can provide msights into the nature of the solution but a computer is 
needed for exact values. 

For this purpose, it is helpful to think of the economist as a labora­
tory scientist. The economist sets up a model and has control over the 
~arameters and exogenous variables. The "experiment" is the model 
Itself. Once the model is setup, the economist starts the experiment 
and watches to see how the endogenous variables evolve over time. 
'_fhe _economist is fre.e to vary the parameters and exogenous variables 
m different experiments to see how this changes the evolution of the 
endogenous variables. 

In the case of the Solow model, our solution will proceed in several 
steps: We begin with several diagrams that provide insight into the 
solutiOn. Then, in Section 2.1.4, we provide an analytic solution for the 
long-run values of the key endogenous variables. A full solution of the 
~odel at every point in time is possible analytically, but this derivation 
IS somewhat difficult and is relegated to the appendix of this chapter. 

1 .l THE SOLOW DIAGRAM 

At the beginning of this section we derived the two key equations of 
the Solow model in terms of output per worker and capital per worker. 
These equations are 

y = kQ (2.4) 

and 

k = sy - (n + d)k. (2.5) 

-Now we are ready to ask fundamental questions of our model. For exam­
ple, an economy starts out with a given stock of capital per worker, k0 , 

and a given population growth rate, depreciation rate, and investment 
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rate. How does output per worker evolve over time in this economy­
i.e., how does the economy grow'? How does output per worker compare 
in the long run between two economies that have different investment 
rates? 

These questions are most easily analyzed in a Solow diagram, as 
shown in Figure 2.2. The Solow diagram consists of two curves, plotted • 
as functions of the capital-labor ratio, k. The first curve is the amount : 
of investment per person, sy = ska. This curve has the same shape , 
as the production function plotted in Figure 2.1, but it is translated 
down by the factor s. The second curve is the line (n + d)k, which , 
represents the amount of new investment per person required to keep i 
the amount of capital per worker constant- both depreciation and the 
growing workforce tend to reduce the amount of capital per person 
in the economy. By no coincidence, the difference between these two 
curves is the change in the amount of capital per worker. When this 
change is positive and the economy is increasing its capital per worker, 
we say that capital deepening is occurring. When this per worker change 
is zero but the actual capital stock K is growing (because of population 
growth), we say that only capital widening is occurring. 

To consider a specific example, suppose an economy has capital l' 
equal to the amount k0 today, as drawn in Figure 2.2. What happens over 
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(n+ d)k 

k 
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time? At k 0 , the amount of investment per worker exceeds the amount 
needed to keep capital per worker constant, so that capital deepening 
occurs -that is, k increases over time. This capital deepening will 
continue until k = k*, at which point sy = (n + d)k, so that k = 0. At 
this point, the amount of capital per worker remains constant, and we 
call such a point a steady state. 

What would happen if instead the economy began with a capital 
stock per worker larger thank*? At points to the right of k* in Figure 2.2, 

the amount of investment per worker provided by the economy is less 
than the amount needed to keep the capital-labor ratio constant. The 
term k is negative, and therefore the amount of capital per worker begins 
to decline in this economy. This decline occurs until the amount of 

capital per worker falls to k*. 
Notice that the Solow diagram determines the steady-state value 

of capital per worker. The production function of equation (2.4) then 
determines the steady-state value of output per worker, y*, as a function 
of k*. It is sometimes convenient to include the production function in 
the Solow diagram itself to make this point clearly. This is done in 

THE SOLOW DIAGRAM AND THE PRODUCTION 
FUNCTION 

{ 

y* 

Consumption • 

sy 

k* k 
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Figure 2.3. Notice that steady-state consumption per worker is then 
given by the difference between steady-state output per worker, y", and 
steady-state investment per worker, sy*. 

-i ") 
r:". 1 •• ) COMPARATIVE STATICS 

Comparative statics are used to examine the response of the model to 
changes in the values of various parameters. In this section, we will 
consider what happens to per capita income in an economy that begins 
in steady state but then experiences a "shock.'' The shocks we will 
consider are an increase in the investment rate, s, and an increase in 
the population growth rate, n. 

AN INCREASE IN THE INVESTMENT RATE Consider an economy that has 
arrived at its steady-state value of output per worker. Now suppose that 
the consumers in that economy decide to increase the investment rate 
permanently from s to some value s'. What happens to k andy in this 
economy? 

H G U R E 2.4 AN INCREASE IN THE INVESTMENT 
RATE 

(n+ d)k 

k 

THE BASIC SOLOW MODEL 31 

The answer is found in Figure 2.4. The increase in the investment 
rate shifts the sv curve upward to s'y. At the current value of the capi­
tal stock, k', investment per worker now exceeds the amount required 
to keep capital per worker constant, and therefore the economy be­
gins capital deepening again. This capital deepening continues until 
s'y = (n + d)J..: and the capital stock per worker reaches a higher value, 
indicated by the point k ... From the production function, we know that 
this higher level of capital per worker will be associated with higher 
per capita output; the economy is now richer than it was before. 

AN INCREASE IN THE POPULATION GROWTH RATE Now consider an alterna­
tive exercise. Suppose an economy has reached its steady state, but then 
because of immigration, for example, the population growth rate of the 
economy rises from n to n'. What happens to k and y in this economy? 

Figure 2.5 computes the answer graphically. The (n + d)k curve 
rotates up and to the left to the new curve (n' + d)k. At the current value 
of the capital stock, k•, investment per worker is now no longer high 
enough to keep the capital-labor ratio constant in the face of the rising 

k** 

AN INCREASE IN POPULATION 
GROWTH 

(n'+ d)k (n + d)k 

k* k 
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population. Therefore the capital-labor ratio begins to fall. It continues 
to fall until the point at which sy = (n' + d)k, indicated by k** in 
Figure 2.5. At this point, the economy has less capital per worker than 
it began with and is therefore poorer: per capita output is ultimately 
lower after the increase in population growth in this example. Why? 

PROPERTIES OF THE STEADY STATE 

By definition, the steady-state quantity of capital per worker is deter­
mined by the condition that k = 0. Equations (2.4) and (2.5) allow us to 
use this condition to solve for the steady-state quantities of capital per 
worker and output per worker. Substituting from (2.4) into (2.5), 

k = sk"' - (n + d)k, 

and setting this equation equal to zero yields 

k* = (-s-)1/(1-a]. 
n+d 

Substituting this into the production function reveals the steady-state 
quantity of output per worker, y*: 

• _ ( S )cx/(1-a] y- ~-

n+d · 

Notice that the endogenous variable y* is now written in terms of the 
parameters of the model. Thus, we have a" solution" for the model, at 
least in the steady state. 

This equation reveals the Solow model's answer to the question 
"Why are we so rich and they so poor?" Countries that have high 
savings/investment rates will tend to be richer, ceteris paribus.6 Such 
countries accumulate more capital per worker, and countries with more 
capital per worker have more output per worker. Countries that have 
high population growth rates, in contrast, will tend to be poorer, accord­
ing to the Solow model. A higher fraction of savings in these economies 
must go simply to keep the capital-labor ratio constant in the face of a 
growing population. This capital-widening requirement makes capital 

6 Ceteris paribus is Latin for "all other things being equal." 
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deepening more difficult, and these economies tend to accumulate less 

capital per worker. 
How well do these predictions of the Solow model hold up empiri­

cally? Figures 2.6 and 2. 7 plot GDP per worker against gross investment 
as a share of GDP and against population growth rates, respectively. 
Broadly speaking, the predictions of the Solow model are borne out by 
the empirical evidence. Countries with high investment rates tend to be 
richer on average than countries with low investment rates, and coun­
tries with high population growth rates tend to be poorer on average. 
At this level, then, the general predictions of the Solow model seem to 

be supported by the data. 
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What does economic growth look like in the steady state of this simple 
version of the Solow model? The answer is that there is no per capita 
growth in this version of the model! Output per worker (and therefore 
per person, since we've assumed the labor force participation rate is 
constant) is constant in the steady state. Output itself, Y, is growing, of 
course, but only at the rate of population growth. 7 

This version of the model fits several of the stylized facts discussed 
in Chapter 1. It generates differences in per capita income across coun­
tries. It generates a constant capital-output ratio (because both k andy 

7This can be seen easily by applying the "take logs and differentiate" trick toy= Y /L. 
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are constant, implying that K/Y is constant). It generates a constant 
interest rate, the marginal product of capital. However, it fails to pre­
dict a very important stylized fact: that economies exhibit sustained per 
capita income growth. In this model, economies may grow for a while, 
but not forever. For example, an economy that begins with a stock of 
capital per worker below its steady-state value will experience growth 
ink andy along the transition path to the steady state. Over time, how­
ever, growth slows down as the economy approaches its steady state, 
and eventually growth stops altogether. 

To see that growth slows down along the transition path, notice two 
things. First, from the capital accumulation equation (equation (2.5)), 
one can divide both sides by k to get 

t = sk"- 1 
- (n + d). (2.6) 

Because a is less than one, as k rises, the growth rate of k gradually 
declines. Second, from Example 2, the growth rate of y is proportional 
to the growth rate of k, so that the same statement holds true for output 
per worker. 

FiGURE 2.8 TRANSITION DYNAMICS 

sylk = sk 
o:-1 

k 
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The transition dynamics implied by equation (2.6) are plotted in 
Figure 2.8.H The first term on the right-hand side of the equation is 
ska-l, which is equal to sy I k. The higher the level of capital per worker, 
the lower the average product of capital, y /k, because of diminishing 
returns to capital accumulation (a is less than one). Therefore, this 
curve slopes downward. The second term on the right-hand side of 
equation (2.6) is n + d, which doesn't depend on k, so it is plotted as 
a horizontal line. The difference between the two lines in Figure 2.8 

is the growth rate of the capital stock, or k/k. Thus, the figure clearly 
indicates that the further an economy is below its steady-state value of 
k, the faster the economy grows. Also, the further an economy is above 
jts steady-state value of k, the faster k declines. 

TECHNOLOGY AND THE SOLOW MODEL 

To generate sustained growth in per capita income in this model, we 
must follow Solow and introduce technological progress to the model. 
This is accomplished by adding a technology variable, A, to the pro­
duction function: 

Y = F(K,AL) = K"(AL)1-". (2.7) 

Entered this way, the technology variable A is said to be "labor­
augmenting" or "Harrod-neutral."9 Technological progress occurs when 
A increases over time- a unit oflabor, for example, is more productive 
when the level of technology is higher. 

An important assumption of the Solow model is that technological 
progress is exogenous: in a common phrase, technology is like "manna 
from heaven," in that it descends upon the economy automatically and 
regardless of whatever else is going on in the economy. Instead of mod­
eling carefully where technology comes from, we simply recognize for 
the moment that there is technological progress and make the assump-

8 This alternative version of the Solow diagram makes the growth implications of the 
Solow model much more transparent. Xavier Sala-i-Martin (1990) emphasizes this point. 
9 The other possibilities are F(AK, L), which is known as "capital-augmenting" or "Solow­
neutral" technology, and AF(K, L), which is known as "Hicks-neutral" technology. With 
the Cobb-Douglas functional form assumed here, this distinction is less important. 

TfCHNOLOGY AND THE SOLOWMODH 

tion that A is growing at a constant rate: 

A ~et A = g -¢==? A = Aot"> , 

37 

where g is a parameter representing the growth rate of technology. Of 
course, this assumption about technology is unrealistic, and explaining 
how to relax this assumption is one of the major accomplishments of 
the "new" growth theory that we will explore in later chapters. 

The capital accumulation equation in the Solow model with tech-
nology is the same as before. Rewriting it slightly, we get 

k y 
- = s-- d. 
K K 

(2.8) 

To see the growth implications of the model with technology, first 
rewrite the production function (2.7) in terms of output per worker: 

Y = k'-' Al-a. 

Then take logs and differentiate: 

· ic A :!': =a-+ (1- a)-. 
y k A 

(2.9) 

Finally, notice from the capital accumulation equation (2.8) that the 
growth rate of K will be constant if and only if Y /K is constant. Fur­
thermore, if Y /K is constant, y /k is also constant, and most important, 
y and k will be growing at the same rate. A situation in which capital, 
output, consumption, and population are growing at constant rates is 
called a balanced growth path. Partly because of its empirical appeal, 
this is a situation that we often wish to analyze in our models. For 
example, according to Fact 5 in Chapter 1, this situation describes the 

U.S. economy. 
Let's use the notation gx to denote the growth rate of some variable 

x along a balanced growth path. Then, along a balanced growth P,ath, 
g = gk according to the argument above. Substituting this relationship 

y . 
into equation (2.9) and recalling that A/ A = g, 

(2.10) 

That is, along a balanced growth path in the Solow model, output per 
worker and capital per worker both grow at the rate of exogenous tech-
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nological change, g. Notice that in the model of Section 2.1, there was 
no technological progress, and therefore there was no long-run growth 
in output per worker or capital per worker; gv = gk = g = 0. The model 
with technology reveals that technological progress is the source of sus­
tained per capita growth. In this chapter, this result is little more than 
an assumption; in later chapters, we will explore the result in much 
more detail and come to the same conclusion. 

41 

, J THE SOLOW DIAGRAM WITH TECHNOLOGY 

The analysis of the Solow model with technological progress proceeds 
very much like the analysis in Section 2.1: we set up a differential 
equation and analyze it in a Solow diagram to find the steady state. The 
only important difference is that the variable k is no longer constant in 
the long run, so we have to write our differentia! equation in terms of 
another variable. The new state variable will be k = Kl AL. Notice that 
this is equivalent to kl A and is obviously consta_?t along the balanced 
growth path because gk = gA = g. The variable k therefore represents 
the ratio of capital per worker to technology. We will refer to this as 
the "capital-technology" ratio (keeping in mind that the numerator is 
capital per worker rather than the total level of cai_Jital). 

Rewriting the production function in terms of k, we get 

(2.11) 

where y = Y I AL = y I A. Following the terminology above, we will 
refer toy as the "output-technology ratio."10 _ 

Rewriting the capital accumulation equation in terms of k is accom­
. plished by following exactly the methodology used in Section 2.1. First, 
note that 

k k A i 
---
k K A L 

Combining this with the capital accumulation equation reveals that 

k = sy- (n + g + d)k. (2.12) 

10The variables y and k are sometimes referred to as "output per effective unit of labor" 
and "capital per effective unit of labor." This labeling is motivated by the fact that tech­
nological progress is labor-augmenting. AL is then the "effective"' amount of labor used 
in production. 
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THE SOLOW DIAGRAM WITH 
TECHNOLOGICAL PROGRESS 
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The _similarity of equations (2.11) and (2.12) to their counterparts in 
Sectwn 2.1 should be obvious. 

The Solow diagram with technological progress is presented in Fig­
ure 2. ~- The analysis of this diagram is very similar to the analysis when 
~ere 1s no technological progress, but the interpretation is slightly 
different. If the economy begins with a capital-technology ratio that 
is below its steady-state level, say at a point such as leo. the capital­
technology ratio will rise gradually over time. Why? Because the amount 
of i~vestment being undertaken exceeds the amount needed to keep the 
capltal-techr:ology ratio constant. This will be true until sy = (n + g+ d)k 
at the point k*, at which point the economy is in steady state and grows 
along a balanced growth path. ~ 

2.2~_2 SOLVING FOR THE STEADY STATE 

The steady-state output-technology ratio is determined by the produc­

tion function and the condition that k = o. Solving for k*, we find 
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that 

Substituting this into the production function yields 

To see what this implies about output per worker, rewrite the equation 
as 

( )

a/(1-a) 

y*(t) = A(t) 
5 

d 
n+g+ 

(2.13) 

where we explicitly note the dependence of y and A on time. From equa­
tion (2.13), we see that output per worker along the balanced growth 
path is determined by technology, the investment rate, and the popu­
lation growth rate. For the special case of g = 0 and A 0 = 1-i.e., of 
no technological progress- this result is identical to that derived in 
Section 2.1. 

An interesting result is apparent from equation (2.13} and is dis­
cussed in more detail in Exercise 1 at the end of this chapter. That 
is, changes in the investment rate or the population growth rate affect 
the long-run level of output per worker but do not affect the long-run 
growth rate of output per worker. To see this more clearly, let's consider 
a simple example. 

Suppose an economy begins in steady state with investment rate s 
and then permanently increases its investment rate to s' (for example, 
because of a permanent subsidy to investment). The Solow diagram for 
this policy change is drawn in Figure 2.10, and the results are broadly 
similar to the case with no technological progress. At the initial capital­
technology ratio k', investment ·exceeds the amount needed to keep the 
capital-technology ratio constant, so k begins to rise. 

To see the effects on growth, rewrite equation (2.12) as 

k -
-= = s~ - (n + g + d), 
k k 
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LOGy 
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effect 

TIME 

That is, a permanent policy change can permanently raise (or lower) 
the level of per capita output. 

2.3 EVALUATING THE SOLOW MODEL 

How does the Solow model answer the key questions of growth and 
development? First, the Solow model appeals to differences in invest­
ment rates and population growth rates and (perhaps) to exogenous 
differences in technology to explain differences in per capita incomes. 
Why are we so rich and they so poor? According to the Solow model, 
it is because we invest more and have lower population growth rates, 
both of which allow us to accumulate more capital per worker and thus 
increase labor productivity. In the next chapter, we will explore this 
hypothesis more carefully and see that it is firmly supported by data 
across the countries of the world. 

Second, why do economies exhibit sustained growth in the Solow 
model? The answer is technological progress. As we saw earlier, with­
out technological progress, per capita growth will eventually cease as 
diminishing returns to capital set in. Technological progress, however, 
can offset the tendency for the marginal product of capital to fall, and 
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in the long run, countries exhibit per capita growth at the rate of tech­

nological progress. 
How, then, does the Solow model account for differences in growth 

rates across countries? At first glanct~. it may seem fhat the Solow model 
cannot do so, except by appealing to differences in (unmodeled) tech­
nological progress. A more subtle explanation, however, can be found 
by appealing to transition dynamics. We have seen several examples 
of how transition dynamics can allow countries to grow at rates differ­
ent from their long-run growth rates. For example, an economy with a 
capital-technology ratio below its long-run level will grow rapidly until 
the capital-technology ratio reaches its steady-state level. This reason­
ing may help explain why countries such as Japan and Germany, which 
had their capital stocks wiped out by World War II, have grown more 
rapidly than the United States over the last fifty years. Or it may explain 
why an economy that increases its investment rate will grow rapidly as 
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it makes the transition to a higher output-technology ratio. This expla­
nation may work well for countries such as South Korea, Singapore, and 
Taiwan. Their investment rates have increased dramatically since 1950, 

as shown in Figure 2.14. The explanation may work less well, however, 
for an economy such as Hong Kong's. This kind of reasoning raises an 
interesting question: can countries permanently grow at different rates? 
This question will be discussed in more detail in later chapters. 

GROWTH ACCOUNTING, THE PRODUCTIVITY SLOWDOWN, 
AND THE NEW ECONOMY 

· We have seen in the Solow model that sustained growth occurs only in 
the presence of technological progress. Without technological progress, 
capital accumulation runs into diminishing returns. With technological 
progress, however, improvements in technology continually offset the 
diminishing returns to capital accumulation. Labor productivity grows 
as a result, both directly because of the improvements in technology 
and indirectly because of the additional capital accumulation these 
improvements make possible. 

In 1957, Solow published a second article, "Technical Change and 
the Aggregate Production Function," in which he performed a simple 
accounting exercise to break down growth in output into growth in cap­
ital, growth in labor, and growth in technological change. This "growth­
accounting" exercise begins by postulating a production function such 
as 

where B is a Hicks-neutral productivity termY Taking logs and dif­
ferentiating this production function, one derives the key formula of 
growth accounting: 

Y k i .i3 
-=a-+ (1- a)-+­
Y K L B. 

(2.14) 

11 In fact. !his growth accounting can be done with a much more general production 

function such as B(t)F(K, L), and the results are very similar. 
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This equation says that output growth is equal to a weighted average 
~f capital and labor growth plus the growth rate of B. This last term, 
B/B, is commonly referred to as total factor productivity growth or 
multifactor productivity growth. Solow, as well as economists such as 
Edward Denison and Dale Jorgenson who followed Solow's approach, 
have used this equation to understand the sources of growth in output. 

Since we are primarily interested here in the growth rate of output 
per worker inst:ad oftotal output, it is helpful to rewrite equation (2.14) 
by subtracting L/L from both sides: 

jr_ k i3 
--a-+­
y k s· (2.15) 

That is, the growth rate of output per worker is decomposed into the 
contribution of physical capital per worker and the contribution from 
multifactor productivity growth. 

The U.S. Bureau of Labor Statistics (BLS) provides a detailed ac­
counting of U.S. growth using a generalization of equation (2.15). Its 
most recent numbers are reported in Table 2.1. They generalize this 
equation in a couple of ways. First, the BLS measures labor by calculat-

TABlE 2.1 GROWTH ACCOUNTING FOR THE UNITED STATES 

1948-98 48-73 73-79 79-90 90-95 95-98 

· Output per hour 2.5 3.3 1.3 1.6 1.5 2.5 

·.Contributions from: 

Capital per hour worked 0.8 1.0 0.7 0.7 0.5 0.8 
Information technology 0.3 0.1 0.3 0.5 0.4 0.8 
Other capital services 0.6 0.9 0.5 0.3 0.1 0.0 

Labor composition 0.2 0.2 0.0 0.3 0.4 0.3 

Multifactor productivity 1.4 2.1 0.6 0.5 0.6 1.4 

SOURCE: Bureau of Labor Statistics (2000). 

Note: The table reports average annuat"growth rates for the private business sector. 
"Information technology" refers to information processing equipment and software. 
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ing total hours worked rather than just the number of workers. Second, 
the BLS includes an additional term in equation (2.15) to adjust for 
the changing composition of the laborforce-to recognize, for example, 
that the labor force is more educated today than it was forty years ago. 

As can be seen from the table, output per hour in the private busi­
ness sector for the United States grew at an average annual rate of 2.5 
percent between 1948 and 1998. The contribution from capital per hour 
worked was 0.8 percentage points, and the changing composition ofthe 
labor force contributed another 0.2 percentage points. Multifactor pro­
ductivity growth accounts for the remaining 1.4 percentage points, by 
definition. The implication is that about one-half of U.S. growth was 
due to factor accumulation and one-half was due to the improvement 
in the productivity of these factors over this period. Because of the way 
in which it is calculated, economists have referred to this 1.4 percent 
as the "residual" or even as a "measure of our ignorance." One inter­
pretation of the multifactor productivity growth term is that it is due to 
technological change; notice that in terms ofthe production function in 
equation (2.7), B = A 1-"'. This interpretation will be explored in later 

chapters. 
Table 2.1 also reveals how GDP growth and its sources have changed 

over time in the United States. One of the important stylized facts re­
vealed in the table is the productivity growth slowdown that occurred 
in the 1 970s. The top row shows that growth in output per hour (also 
known as labor productivity) slowed dramatically after 1973; growth 
between 1973 and 1995 was nearly 2 percentage points slower than 
growth between 1948 and 1973. What was the source of this slow­
down? The next few rows show that the changes in the contributions 
from capital per worker and labor composition are relatively minor. The 
primary culprit ofthe productivity slowdown is a substantial decline in 
the growth rate of multifactor productivity. For some reason, the "resid­
ual" was much lower after 1973 than before: the bulk of the productivity 
slowdown is accounted for by the "measure of our ignorance.·~ A similar 
productivity slowdown occurred throughout the advanced countries of 

the world. 
Various explanations for the productivity slowdown have been ad-

vance·d. For example, perhaps the sharp rise in energy prices in 1973 
and 1979 contributed to the slowdown. One problem with this expla­
nation is that in real terms energy prices were lower in the late 1 980s 
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than they wcm before the oil shocks. Another explanation may involve 
the changing composition of the labor force or the sectoral shift in the 
economy away from manufacturing (which tends to have high labor 
productivity) toward services (many of which have low labor produc­
tivity). This explanation receives some support from mcent evidence 
that productivity growth recovered substantially in tlw 1980s in man·u­
facturing. It is possible that a slowdown in resources spent on research 
and development (R&D) in the late 1960s contributed to the slowdown 
as well. Or, perhaps it is not the 1970s and 1980s that need to be ex­
plained but rather the 1950s and 1960s: growth may simply have been 
artificially and temporarily high in the years following World War II be­
cause of the application to the private sector of new technologies created 
for the war. Nevertheless, careful work on the productivity slowdown 
has failed to provide a complete explanation. 12 

The flip side of the productivity slowdown after 1973 is the rise in 
prod ucti vi ty growth in the 1995-98 period, sometimes labeled the "New 
Economy." Growth in output per hour and in multi factor productivity 
rose substantially in this period, returning about 50 percent of the way 
back to the growth rates exhibited before 1973. As shown in Table 2.1, 
the increase in growth rates is partially associated with an increase 
in the use of information technology. Before 1973, this component of 
capital accumulation contributed only 0.1 percentage points of growth, 
but by the late 1990s, this contribution had risen to 0.8 percentage 
points. In addition, evidence suggests that as much as half of the rise 
in multifactor productivity growth in recent years is due to increases in 
efficiency of the production of information technology. 

Recently, a number of economists have suggested that the informa­
tion-technology revolution associated with the widespread adoption of 
computers might explain both the productivity slowdown after 1973 
as well as the recent rise in productivity growth. According to this hy- t 

pothesis, growth slowed temporarily while the economy adapted its t 
factories to the new production techniques associated with information ! 
technology and as workers learned to take advantage of the new tech- f 
nology. The cccent upwcge in pwductivity gwwth, then, ceflect' the I 
12 The fall 1988 issue of the journal of Economic Perspectives contains snveral papers 

discussing potential explanations of the productivity slowdown. r 
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successful widespread adoption of this new technology. The recent up­
surge in productivity growth, then, reflects the successful widespread 
adoption of this new technologyY Whether or not this view is correct 
remains to be seen. 

Growth accounting has also been used to analyze economic growth 
in countries other than the United States. One of the more interesting 
applications is to the NICs of South Korea, Hong Kong, Singapore, and 
Taiwan. Recall from Chapter 1 that average annual growth rates have 
exceeded 5 percent in these economies since 1960. Alwyn Young (1995) 
shows that a large part of this growth is the result of factor accumulation: 
increases in investment in physical capital and education, increases in 
labor force participation, and a shift from agriculture into manufactur­
ing. Support for Young's result is provided in Figure 2.15. The vertical 
axis measures growth in output per worker, while the horizontal axis 
measures growth in Harrod-neutral (i.e., labor-augmenting) total fac­
tor productivity. That is, insteadof focusing on growth in B, where 
B = Al-a, we focus on the growth of A. (Notice that with a = j, the 
growth rate of A is simply 1.5 times the growth rate of B.) This change 
of variables is often convenient because along a steady-state balanced 
growth path, gy = gA· Countries growing along a balanced growth path, 
then, should lie on the 45-degree line in the figure. 

Two features of Figure 2.15 stand out. First, while the growth rates 
of output per worker in the East Asian countries are clearly remark­
able, their rates of growth in total factor productivity (TFP) are less so. 
A number of other countries such as Italy, Brazil, and Chile have also 
experienced rapid TFP growth. Total factor productivity growth, while 
typically higher than in the United States, was not exceptional in the 
East Asian economies. Second, the East Asian countries are far above 
the 45-degree line. This shift means that growth in output per worker 
is much higher than TFP growth would suggest. Singapore is an ex­
treme example, with slightly negative TFP growth. Its rapid growth of 
output per worker is entirely attributable to growth in capit<tl and ed­
ucation. More generally, a key source of the rapid growth performance 

l:lSee Paul David (1990) and Jeremy Greenwood and Mehmet Yorukoglu (1997). More 
generally, a nice collection of pape~s on the "New Economy" can be found in the Fall 

2000 issue of the Journal of Economic Perspectives. 
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of these countries is factor accumulation. Therefore, Young concludes, 
the framework of the Solow model (and the extension of the model in 
Chapter 3) can explain a substantial amount of the rapid growth of the 

East Asian economies. 

APPENDIX: CLOSED-FORM SOLUTION 
OF THE SOLOW MODEL 

It is possible to solve analytically for output per worker y(t) at each point 
in time in the Solow model. The derivation of this solution is beyond 
the scope of this book. One derivation can be found in the appendix to 
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Chapter 1 of Barra and Sala-i-Martin (1998). Another can be found in 
"A Note on the Closed-Form Solution of the Solow Model," which can 
be downloaded from my Web page at http:! /emlab.berkeley.edu/users/ 
chad/papers.html#closed form. The key~nsight is to recognize that the 
differential equation for the capital-output ratio in the Solow model is 
linear and can be solved using standard techniques. 

Although the method of solution is beyond the scope of this book, 
the exact solution is still of interest. It illustrates nicely what it means 
to "solve" a model: 

y(t) = ( s (1- e-At)+ (Yo)':" e-At)'~" A(t). 
n+g+d A0 

In this expression, we have defined a new parameter: A = (1 - a)(n + 
g+ d). Notice that output per worker at any timet is written as a function 
of the parameters of the model as well as of the exogenous variable A(t). 

To interpret this expression, notice that at t = 0, output per worker 
is simply equal to y0 , which in turn is given by the parameters of the 
model; recall that y0 = kg A6 -a. That's a good thing: our solution says 
that output per worker starts at the level given by the production func­
tion! At the other extreme, consider what happens as t gets very large, 
in the limit going off to infinity. In this case, e-At goes to zero, so we 
are left with an expression that is exactly that given by equation (2.13): 
output per worker reaches its steady-state value. 

In between t = 0 and t = oo, output per worker is some kind of 
weighted average of its initial value and its steady-state value. As time 
goes on, all that changes are the weights. 

The interested reader will find it very useful to go back and rein­
terpret the Solow diagram and the various comparative static exercises 
with this solution in mind. 

EXERCISES 

1. A decrease in the investment rate. Suppose the U.S. Congress en­
acts legiSlation that discourages saving and investment, such as the 
elimination of the investment tax credit that occurred in 1990. As a 
result, suppose the investment rate falls permanently from s' to s". 
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Examine this policy change in the Solow modPl with technological 
progress, assuming that the economy begins in steady state. Sketch 
a graph of how (the natural log of) out put per worker evolves over 
time with and without the policy change. Make; a similar graph for 
the growth rate of output per worker. Dot~s the policy change perma­
nently reduce the level or the growth rote of output per worker'? 

2. An increase in the labor force. Shocks to an economy. such as wars, 
famines, or the unification of two economies, often generate large 
one-time flows of workers across borders. What are the short-run and 
long-run effects on an economy of a one-time permanent increase in 
the stock of labor? Examine this question in the context of the Solow 
model with g = 0 and n > 0. 

3. An income tax. Suppose the U.S. Congress decides to levy an income 
tax on both wage income and capital income. Instead of receiving 
wL + rK = Y, consumers receive (1 - T)wL + (1 - T)rK = (1 - T)Y. 
Trace the consequences of this tax for output per worker in the short 
and long runs, starting from steady state. 

4. Manna falls faster. Suppose that there is a permanent increase in the 
rate of technological progress, so that grises to g'. Sketch a graph of 
the growth rate of output per worker over time. Be sure to pay close 
attention to the transition dynamics. 

5. Can we save too much? Consumption is equal to output minus in­
vestment: c = (1 - s)y. In the context of the Solow model with 
no technological progress, what is the savings rate that maximizes 
steady-state consumption per worker? What is the marginal product 
of capital in this steady state? Show this point in a Solow diagram. 
Be sure to draw the production function on the diagram, and show 
consumption and saving and a line indicating the marginal product 
of capital. Can we save too much? 

6. Solow (1956} versus Solow (1957}. In the Solow model with tech­
nological progress, consider an economy that begins in steady state 
with a rate of technological progress, g. of 2 percent. Suppose grises 
permanently to 3 percent. Assume a = 1/3. 

(a) What is the growth rate of output per worker before the change, 
and what happens to this growth rate in the long run? 
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(b) Using equation (2.15). perform the growth accounting exercise 
for this economy, both before the change and after the economy 
has reached its new balanced growth path. (Hint: recall that B = 
A 1 

-n .) How much of the increase in the growth rate of output per 
worker is due to a change in the growth rate of capital per worker, 
and how much is due to a change in multifactor productivity 
growth? 

(c) In what sense does the growth accounting result in part (b) pro­
duce a misleading picture of this experiment? 


